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Artificial neural networks (ANNs) were successfully developed for the modeling and
prediction dielectric constant of different ternary liquid mixtures at various temperatures
(�10�C� t� 80�C) and over the complete composition range (0� x1, x2, x3� 1).
A three-layered feed forward ANN with architecture 7-16-1 was generated using seven
parameters as inputs and its output is dielectric constant of media. It was found that properly
selected and trained neural network could fairly represent the dependence of dielectric constant
of different ternary liquid mixtures on temperature and composition. For the evaluation of the
predictive power of the generated ANN, an optimized network was applied for predicting the
dielectric constant in the prediction set, which were not used in the modeling procedure.
Squared correlation coefficient (R2) and root mean square error for prediction set are 0.9997
and 0.2060, respectively. The mean percent deviation (MPD) for the property in the prediction
set is 0.8892%. The results show nonlinear dependence of dielectric constant of ternary mixed
solvent systems on temperature and composition is significant.
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1. Introduction

The dielectric constant is an important property of matters and liquids in particular,
in connection with the transport phenomena in solution, e.g. transport of liquids
through membranes either in biological systems or in industrial applications [1, 2].
Drug solubility in mixed solvents, acid dissociation constants of drugs, chemical
stability of pharmaceuticals and the concentration of a drug in plasma from mixed
solvent vehicles could be explained considering dielectric constant of the solvent system
[3]. The utility of the dielectric constant for interpretation of solvent–solute behavior
motivates the desire for an availability of this data. Solvent effects described through
their dielectric properties may play an important role in the chemical reactivity and
equilibrium. In general, the dielectric constant can be a very useful parameter to
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consider when reaction environment needs to be optimized to achieve better control
over the chemical reaction [4]. The dielectric properties of the liquid mixtures seem of
particular interest for both theoretical and practical reasons and as a rule cannot be
predicted from the dielectric properties of the components. Much of the work reported
in the literature in this field has employed binary mixtures, while ternary (and upper)
solvent systems has been only slightly reviewed in spite of their more representative
behavior of real system in actual use [5–10].

Artificial neural networks (ANNs) have become popular due to their success where
complex nonlinear relationships exist amongst data [11–14]. Artificial neural networks
are biologically inspired computer programs designed to simulate the way in which the
human brain processes information. Artificial neural networks gather their knowledge
by detecting the patterns and relationships in data and learned (or trained) through
experience, not from programming. The wide applicability of ANNs stems from their
flexibility and ability to model nonlinear systems without prior knowledge of an
empirical model. Neural networks do not need an explicit formulation of the
mathematical or physical relationships of the handled problem. These give ANNs an
advantage over traditional fitting methods for some chemical application. For these
reasons in recent years, ANNs have been used for a wide variety of chemical problems
such as simulation of mass spectra, ion interaction chromatography, aqueous solubility
and partition coefficient, simulation of nuclear magnetic resonance spectra, prediction
of bioconcentration factor, solvent effects on reaction rate, prediction normalized
polarity parameter in mixed solvent systems and dissociation constant of acids [15–31].

The correlation of dielectric constant for various organic compounds with molecular
structure has been proposed using ANNs [2,4,7]. But there is no similar model for
correlation of dielectric constant of liquid mixtures with temperature and composition.

In this work, for inspection of nonlinear relation of dielectric constant of different
ternary liquid mixtures with temperature and composition, an ANN model, for a first
time, was generated for prediction the property in various temperatures and
compositions and the results were compared with the calculated values based on very
recently proposed models.

2. Theory

A detailed description of theory behind neural networks has been adequately described
by different researchers [11–14]. There are many types of neural networks designed by
now and new ones are invented every week, but the behavior of a neural network is
determined by transfer functions of its neurons, by learning rule, and by the architecture
itself. An ANN is formed from artificial neuron or processing elements (PE), connected
with coefficients (weights), which constitute the neural structure and are organized in
layers. The first layer is termed the input layer, and the last the output layer. The layers
of neurons between the input and output layers are called hidden layers. The number of
neurons in the input and output layers are defined by system’s properties. The number
of neurons in the hidden layer could be considered as an adjustable parameter, which
should be optimized. The input layer receives the experimental or theoretical
information and the output layer produces the calculated values of dependent variables.
Artificial neural networks allow one to estimate the relationships between input
variables and one or several output dependent variables. The use of ANNs consists of
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two steps: ‘‘training’’ and ‘‘prediction’’. In the training phase the optimum structure,
weight coefficients and biases are searched for. These parameters are found from
training and validation data sets. After the training phase, the trained network can be
used to predict (calculate) the outputs from a set of inputs. There are many types of
network architectures, but the type that has been most useful for prediction studies is
the multiplayer feed-forward network with back-propagation (BP) learning rule [14].
Information from inputs is fed forward through the network to optimize the weights
between neurons. The ANN reads the input and target values in the training data set
and changes the values of the weighted links to reduce the difference between the
calculated output and target values. The error between output and target values is
minimized across many training cycles until network reaches specified level of accuracy.
If a network is left to train for too long, however, it will overtrain and lose the ability
to generalize [29–31].

3. Experimental

3.1. Data set

A reliable database is critically important for the training of ANNs. Six ternary liquid
mixtures including N,N-dimethylformamideþ 2-methoxyethanolþ 1,2-dimeth-
oxyethane (�10�C� t� 20�C), N,N-dimethylformamideþ 2-methoxyethanolþ 1,2-
dimethoxyethane (25�C� t� 80�C), 2-methoxyethanolþ 1,2-dimethoxyethaneþ
water (�10�C� t� 80�C), ethane-1,2-diolþ 1,2-dimethoxyethaneþwater (�10�C� t
� 80�C), ethane-1,2-diolþ 2-methoxyethanolþwater (30�C� t� 50�C), 1,2-
dichloroethaneþ 2-methoxyethanolþ 1,2-dimethoxyethane (�10�C� t� 80�C) at var-
ious temperatures and compositions have been used [5–10]. The data set was randomly
divided into three groups: a training set, a validation set and a prediction set consisting
of 1361, 202 and 202 data, respectively. The training and validation sets were used for
the model generation and the prediction set was used for evaluation of the generated
model, because a prediction set is a better estimator of the ANN generalization ability
than a validation (monitoring) set [29–31].

3.2. Neural network generation

The specification of a typical neural network model requires the choice of the type of
inputs, the number of hidden layers, the number of neurons in each hidden layer and
the connection structure between the input and output layers. The inputs of ANNs are
dielectric constants and mole fractions of constituents of ternary mixed solvent system
and temperature. A three-layer network with a sigmoidal transfer function was
designed. The initial weights were randomly selected between 0 and 1. Before training,
the input and output values were normalized (or scaled) between 0.1 and 0.9.
After training of the optimized ANN, the data sets were unscaled. The optimization of
the weights and biases was carried out according to resilient BP algorithm for BP of
error [32]. For evaluation prediction power of the network, the trained ANN was used
to predict dielectric constant of the data set included in the prediction set.
The performances of training, validation and prediction of ANNs are evaluated by
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the mean percentage deviation (MPD) and root-mean square error (RMSE), which are
defined as follows:

MPD ¼
100

N

XN
i¼1

ðPcalcd
i � Pexptl

i Þ

Pexptl
i

�����
����� ð1Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

ðPcalcd
i � Pexptl

i Þ
2

N

vuut ð2Þ

where Pexptl
i and Pcalcd

i are experimental and calculated values of dielectric constant and
N denote the number of data points.

Individual percent deviation (IPD) and residual are defined as follows:

IPD ¼ 100�
Pcalcd
i � Pexptl

i

Pexptl
i

 !
ð3Þ

Residual ¼ Pcalcd
i � Pexptl

i : ð4Þ

The processing of the data was carried using Matlab 6.5 [33]. The neural networks were
implemented using Neural Network Toolbox Ver. 4.0 for Matlab [32].

4. Results and discussion

There are no rigorously theoretical principles for choosing the proper network
topology; so different structures were tested in order to obtain the optimal hidden
neurons and training cycles [30]. Before training the network, the number of nodes in
the hidden layer was optimized. In order to optimize the number of nodes in the hidden
layer, several training sessions were conducted with different numbers of hidden nodes
(from 1 to 20). The root mean square error of training (RMSET) and validation
(RMSEV) sets were plotted versus the number of iterations for different number of
neurons at the hidden layer and the minimum value of RMSEV was recorded as the
optimum value. Plot of RMSET and RMSEV versus the number of nodes in the hidden
layer has been shown in figure 1. It is clear that 16 nodes in hidden layer is optimum
value, because its RMSEV is minimum.

This network consists of seven inputs (including dielectric constants and mole
fractions of constituents of ternary liquid mixtures and temperature) and one output for
dielectric constant. Then an ANN with architecture 7-16-1 was generated. It is
interesting to note that training of the network was stopped when the RMSEV started
to increase i.e. when overtraining begins. The overtraining causes the ANN to loose its
prediction power [29–31]. Therefore, during training of the networks, it is desirable that
iterations are stopped when overtraining begins. To control the overtraining of the
network during the training procedure, the values of RMSET and RMSEV were
calculated and recorded to monitor the extent of the learning in various iterations.
Results demonstrated that overtraining is not seen in this work (figure 2).

The generated ANN was then trained using the training set for the optimization of
the weights and biases. For evaluation of the predictive power of the generated ANN,
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Figure 1. Plot of RMSE for training and validation sets vs. the number of nodes in hidden layer.
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Figure 2. Plot of RMSE for training and validation sets vs. the number of iterations.
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an optimized network was applied for predicting the dielectric constant in different

ternary mixed solvent systems at various temperatures and compositions in the

prediction set (including 202 data), which were not used in the modeling procedure.

The calculated values of the dielectric constant in various compositions and

temperatures for training, validation and prediction sets using the ANN model were

obtained. The correlation equation for all of the calculated values of dielectric constant

from ANN model versus the experimental values is as follows:

"ðcalÞ ¼ 0:99967"ðexpÞ þ 0:00736 ð5Þ

N ¼ 1765;R2 ¼ 0:9998;MPD ¼ 0:8116;RMSE ¼ 0:2030;F1,1764 ¼ 8910076:33:

As can be seen, the calculated values of dielectric constant (") are in good agreement

with those of the experimental values. Similarly, the correlation of the calculated

values of dielectric constant versus the experimental values of it in prediction set

gives equation (6):

"ðcalÞ ¼ 0:99810"ðexpÞ þ 0:04401 ð6Þ

N ¼ 202;R2 ¼ 0:9997;MPD ¼ 0:8892;RMSE ¼ 0:2060;F1,201 ¼ 728169:3:

Plot of the residual for calculated values of dielectric constant in validation and

prediction sets versus the experimental values of it has been illustrated in figure 3.

The results demonstrate that the maximum value of the residual for the calculated

values of dielectric constant in the prediction set is 0.7644.
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Figure 3. Plot of the residual for calculated values of dielectric constant from the ANN model vs. the
experimental values of it for validation and prediction sets.
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As can be seen the model did not show proportional and systematic error, because
the slope (a¼ 0.99810) and intercept (b¼ 0.04401) of the correlation equation are not
significantly different from unity and zero, respectively, and the propagation of errors
in both sides of zero are random (figure 3).

Table 1 compares the results obtained using the ANN model. The correlation
coefficient (R), RMSE, MPD and F-value of the model for total, training, validation
and prediction sets show potential of the ANN model for prediction of dielectric
constant in ternary mixed solvent systems at various temperatures and compositions.

Very recently a correlative model for calculating dielectric constants of
1,2-dichloroethaneþ 2-methoxyethanolþ 1,2-dimethoxyethane at temperatures from –
10 to 80�C was proposed based on Redlich–Kister extension [3]. The MPD by this
model is 3.05. Therefore MPD for the ANN model (0.8892) is very lower than the
correlative model (3.05). The ANN and the correlative models are based on
experimental values for building of the model. As a result, it was found that properly
selected and trained neural network could fairly represent the dependence of dielectric
constant on composition and temperature in ternary mixed solvent systems. Then the
optimized neural network could simulate the complicated nonlinear relationship
between dielectric constant of ternary mixed solvent systems and mole fractions and
dielectric constants of constituents of mixture and temperature.
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